Questions 5. (20 Marks) Consider the time-varying system

$$x' = f(t, x), \tag{TS}$$

where f(t, x) is continuous and locally Lipschitz in x for all $t \ge 0$ and $x \in D \subset \mathbb{R}^n$; $f(t, 0) \equiv 0$ for all $t \ge 0$ and $x = 0 \in D$. Let $V : [0, \infty) \times D \to \mathbb{R}$ be of C^1 such that

$$W_1(x) \le V(t, x) \le W_2(x);$$
 (5a)

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \le 0;$$
(5b)

$$V(t+\delta,\varphi(t+\delta;t,x)) - V(t,x) \le -\lambda V(t,x), \qquad (5c)$$

for all $t \ge 0$, $x \in D$ and for some $\delta > 0$, where $W_j(x) > 0$ (j = 1, 2) are positive definite on D, $0 < \lambda < 1$, and $\varphi(s; t, x)$ is the solution of (TS) that starts at (t, x). 1. Show that x = 0 is uniformly asymptotically stable.

2. If all the conditions hold globally and $W_1(x)$ is radially unbounded, show that x = 0 is globally uniformly asymptotically stable.

Proof. 1. Since (5a) and (5b), similar to Theorem 14.1, we can choose r > 0 and $\rho > 0$ such that $B_r \subset D$ and $\rho < \min_{\|x\|=r} W_1(x)$. Then, there exists an invariant set

 $\Omega_{t,\rho}$ such that

$$x_0 \in \{x \in B_r \mid W_2(x) \le \rho\} \subset \Omega_{t,\rho} \implies \varphi(t) \in \Omega_{t,\rho}, \quad \forall t \ge t_0 \ge 0.$$

According to (5c), for all $\forall t \ge t_0$, we have

$$V(t+\delta, \varphi(t+\delta)) \leq (1-\lambda)V(t, x).$$

Moreover, since (5.b), we have

$$V(s, \varphi(s)) \leq V(t, \varphi(t)), \quad \forall s \in [t, t+\delta].$$

For any $t \ge t_0$, there exists the smallest positive integer N such that $t \le t_0 + N\delta$. Divide the interval $[t_0, t_0 + (N-1)\delta]$ into (N-1) equal subintervals of length δ each. Then,

$$\begin{split} V(t,\varphi(t)) &\leq V(t_0 + (N-1)\delta, \varphi(t_0 + (N-1)\delta)) \\ &\leq (1-\lambda)V(t_0 + (N-2)\delta, \varphi(t_0 + (N-2)\delta)) \end{split}$$

$$\leq \cdots \leq (1-\lambda)^{(N-1)} V(t_0, x_0) = \frac{1}{1-\lambda} (1-\lambda)^N V(t_0, x_0)$$
$$\leq \frac{1}{1-\lambda} (1-\lambda)^{\frac{t-t_0}{\delta}} V(t_0, x_0).$$

Since $0 < 1 - \lambda < 1$, let $b = \frac{1}{\delta} \ln \frac{1}{1 - \lambda} > 0$, which implies that $0 < 1 - \lambda = e^{-b\delta} < 1$. Then, we have

$$V(t,\varphi(t)) \leq \frac{1}{1-\lambda} (1-\lambda)^{\frac{t-t_0}{\delta}} V(t_0,x_0) \leq \frac{1}{1-\lambda} e^{-b(t-t_0)} V(t_0,x_0).$$

Taking $\beta(r, s) = \frac{r}{1 - \lambda} e^{-bs}$, which is a class *KL* function. The above inequality can be written as

$$V(t, \varphi(t)) \le \beta (V(t_0, x_0), t - t_0).$$

Since $W_1(x)$ and $W_2(x)$ are positive definite, there exist α_1 and $\alpha_2 \in K$, defined on [0, r], such that

$$W_1(x) \ge \alpha_1(||x||), \ W_2(x) \le \alpha_2(||x||).$$

Therefore, any solution starting in $\Omega_{t,\rho}$ satisfies the inequality

$$\|\varphi(t)\| \le \alpha_1^{-1}(V(t,\varphi(t))) \le \alpha_1^{-1}(\beta(V(t_0,x_0),t-t_0))$$
$$\le \alpha_1^{-1}(\beta(\alpha_2(\|x_0\|),t-t_0)) = \tilde{\beta}(\|x_0\|,t-t_0)$$

for $x_0 \in \{x \in B_r | W_2(x) \le \rho\} \subset \Omega_{t,\rho}$. By Lemma 14.1 it shows that $\tilde{\beta}(\cdot, \cdot)$ is of class *KL* function. Thus, it implies that x = 0 of (TS) is UAS.

2. If $D = R^n$, $W_1(x)$ is radially unbounded, so is $W_2(x)$ by (14.5). Therefore, we can find $\alpha_2 \in K_{\infty}$ s.t. $W_2(x) \le \alpha_2(||x||)$. For any $x_0 \in R^n$, we choose $\rho > 0$ such that $||x_0|| \le \alpha_2^{-1}(\rho)$, i.e. $\alpha_2(||x_0||) \le \rho$. Then, $W_2(x_0) \le \alpha_2(||x_0||) \le \rho \implies x_0 \in \{x \in R^n | W_2(x) \le \rho\}$. The rest of the proof is the same as the above part for showing UAS. The end.